| 1 |
#!/usr/bin/env python |
| 2 |
|
| 3 |
# $Id: sixtest.py,v 1.4 2008/02/06 03:14:58 joko Exp $ |
| 4 |
|
| 5 |
# (c) 2008 Andreas Motl <andreas.motl@ilo.de> |
| 6 |
|
| 7 |
# This program is free software: you can redistribute it and/or modify |
| 8 |
# it under the terms of the GNU Affero General Public License as published by |
| 9 |
# the Free Software Foundation, either version 3 of the License, or |
| 10 |
# (at your option) any later version. |
| 11 |
# |
| 12 |
# This program is distributed in the hope that it will be useful, |
| 13 |
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 |
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 |
# GNU Affero General Public License for more details. |
| 16 |
# |
| 17 |
# You should have received a copy of the GNU Affero General Public License |
| 18 |
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 |
|
| 20 |
|
| 21 |
import sys |
| 22 |
import random |
| 23 |
from sixdegrees import Graph, Node |
| 24 |
|
| 25 |
|
| 26 |
# maximum search depth (DLS limiter) |
| 27 |
MAX_SEARCH_DEPTH = 4 |
| 28 |
|
| 29 |
# settings for random graph |
| 30 |
#RANDOM_MAX_NODES = 10 |
| 31 |
#RANDOM_MAX_CHILDREN_PER_NODE = 5 |
| 32 |
RANDOM_MAX_NODES = 10000 |
| 33 |
RANDOM_MAX_CHILDREN_PER_NODE = 20 |
| 34 |
|
| 35 |
|
| 36 |
ENABLE_PROFILING = False |
| 37 |
ENABLE_JIT = True |
| 38 |
|
| 39 |
|
| 40 |
if ENABLE_PROFILING: |
| 41 |
import profile |
| 42 |
from profile import Profile |
| 43 |
|
| 44 |
|
| 45 |
def operateOnFixedGraph(): |
| 46 |
|
| 47 |
# 1. create fixed graph (for testing) |
| 48 |
# 4: 6, 10 |
| 49 |
# 5: 6, 9 |
| 50 |
# 6: 5, 4 |
| 51 |
print '-' * 42 |
| 52 |
print ' Generating fixed graph' |
| 53 |
print '-' * 42 |
| 54 |
graph = Graph() |
| 55 |
graph.addRelation(4, 6) |
| 56 |
graph.addRelation(4, 10) |
| 57 |
graph.addRelation(5, 6) |
| 58 |
graph.addRelation(5, 9) |
| 59 |
graph.addRelation(6, 5) |
| 60 |
graph.addRelation(6, 4) |
| 61 |
print graph |
| 62 |
|
| 63 |
# 2. choose two fixed nodes (for testing) |
| 64 |
node1 = graph.getNode(4) |
| 65 |
node2 = graph.getNode(5) |
| 66 |
|
| 67 |
findAllPaths(graph, node1, node2) |
| 68 |
|
| 69 |
|
| 70 |
def buildRandomGraph(graph): |
| 71 |
|
| 72 |
count = 0 |
| 73 |
for parent_id in range(1, RANDOM_MAX_NODES + 1): |
| 74 |
count += 1 |
| 75 |
if count % 100 == 0: |
| 76 |
sys.stderr.write('.') |
| 77 |
for j in range(1, random.randint(1, RANDOM_MAX_CHILDREN_PER_NODE)): |
| 78 |
child_id = random.randint(1, RANDOM_MAX_NODES) |
| 79 |
graph.addRelation(parent_id, child_id) |
| 80 |
sys.stderr.write("\n") |
| 81 |
|
| 82 |
""" |
| 83 |
RANDOM_MAX_NODES = 10 |
| 84 |
for i in range(1, RANDOM_MAX_NODES + 1): |
| 85 |
parent_id = random.randint(1, RANDOM_MAX_NODES) |
| 86 |
child_id = random.randint(1, RANDOM_MAX_NODES) |
| 87 |
graph.addRelation(parent_id, child_id) |
| 88 |
""" |
| 89 |
|
| 90 |
def operateOnRandomGraph(): |
| 91 |
|
| 92 |
# 1. create random graph |
| 93 |
print '-' * 42 |
| 94 |
print ' Generating random graph' |
| 95 |
print '-' * 42 |
| 96 |
graph = Graph() |
| 97 |
buildRandomGraph(graph) |
| 98 |
#print graph |
| 99 |
|
| 100 |
# 2. choose two random distinct nodes |
| 101 |
node1 = graph.getNode(random.choice(graph.index.keys())) |
| 102 |
node2 = node1 |
| 103 |
while node1 is node2: |
| 104 |
node2 = graph.getNode(random.choice(graph.index.keys())) |
| 105 |
|
| 106 |
findAllPaths(graph, node1, node2) |
| 107 |
|
| 108 |
|
| 109 |
def findAllPaths(graph, source_node, target_node): |
| 110 |
|
| 111 |
# 1. calculate paths |
| 112 |
print '-' * 42 |
| 113 |
print " Finding paths from %s to %s (depth=%s)" % (source_node.id, target_node.id, MAX_SEARCH_DEPTH) |
| 114 |
print " Using JIT (Psyco):", bool(sys.modules.get('psyco')) |
| 115 |
print '-' * 42 |
| 116 |
|
| 117 |
""" |
| 118 |
def doCompute(): |
| 119 |
#global paths |
| 120 |
paths = graph.computePaths(source_node, target_node, MAX_SEARCH_DEPTH) |
| 121 |
return paths |
| 122 |
""" |
| 123 |
|
| 124 |
if ENABLE_PROFILING: |
| 125 |
global paths |
| 126 |
paths = [] |
| 127 |
p = Profile() |
| 128 |
p.runcall(doCompute) |
| 129 |
p.print_stats() |
| 130 |
else: |
| 131 |
paths = graph.computePaths(source_node, target_node, MAX_SEARCH_DEPTH) |
| 132 |
|
| 133 |
#p.create_stats() |
| 134 |
#a = p.dump_stats() |
| 135 |
#print a |
| 136 |
#print dir(p) |
| 137 |
#for key, value in p.timings.iteritems(): |
| 138 |
# print '%s: %s' % (key, value) |
| 139 |
|
| 140 |
# 2. output paths |
| 141 |
#print paths |
| 142 |
for path in paths: |
| 143 |
id_list = [] |
| 144 |
for node in path: |
| 145 |
id_list.append(str(node.id)) |
| 146 |
print ' -> '.join(id_list) |
| 147 |
#print '-' * 21 |
| 148 |
|
| 149 |
|
| 150 |
def main(): |
| 151 |
#operateOnFixedGraph() |
| 152 |
operateOnRandomGraph() |
| 153 |
|
| 154 |
|
| 155 |
if __name__ == '__main__': |
| 156 |
if ENABLE_JIT: |
| 157 |
# Import Psyco if available |
| 158 |
try: |
| 159 |
import psyco |
| 160 |
psyco.log() |
| 161 |
psyco.full() |
| 162 |
except ImportError: |
| 163 |
pass |
| 164 |
main() |